Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield
نویسندگان
چکیده
BACKGROUND Wood cell walls are rich in cellulose, hemicellulose and lignin. Hence, they are important sources of renewable biomass for producing energy and green chemicals. However, extracting desired constituents from wood efficiently poses significant challenges because these polymers are highly cross-linked in cell walls and are not easily accessible to enzymes and chemicals. RESULTS We show that aspen pectate lyase PL1-27, which degrades homogalacturonan and is expressed at the onset of secondary wall formation, can increase the solubility of wood matrix polysaccharides. Overexpression of this enzyme in aspen increased solubility of not only pectins but also xylans and other hemicelluloses, indicating that homogalacturonan limits the solubility of major wood cell wall components. Enzymatic saccharification of wood obtained from PL1-27-overexpressing trees gave higher yields of pentoses and hexoses than similar treatment of wood from wild-type trees, even after acid pretreatment. CONCLUSIONS Thus, the modification of pectins may constitute an important biotechnological target for improved wood processing despite their low abundance in woody biomass.
منابع مشابه
Acetylation of Polysaccharides in Plant Cell Wall with a Focus on Woody Species
Plant cell wall in woody tissues is a complex matrix, which consists of cellulose, matrix polysaccharides and lignin. The matrix polysaccharides are substituted with acetyl group that are hypothesised to play important roles in determining properties of these polysaccharides. The aim of this thesis was to understand the role of Oacetylation in plants and investigate possibilities for improvemen...
متن کاملRecalcitrance of Wood to Biochemical Conversion - Feedstock Properties, Pretreatment, Saccharification, and Fermentability
Lignocellulose is an inexpensive and abundant renewable resource that can be used to produce advanced biofuels, green chemicals, and other bio-based products. Pretreatment and efficient enzymatic saccharification are essential features of bioconversion of lignocellulosic biomass. The aims of the research were to achieve a better understanding of the recalcitrance of woody biomass to bioconversi...
متن کاملLignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana
BACKGROUND Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lign...
متن کاملOptimization for enzyme-retting of flax with pectate lyase
Flax (Linum usitatissimum L.) is an important commercial crop that supplies both linseed and bast fibers for multiple applications. Retting, which is a microbial process, separates industrially useful bast fibers from non-fiber stem tissues. While several methods (i.e., waterand dew-retting) are used to ret flax, more recently enzymes have been evaluated to replace methods used currently. Alkal...
متن کاملA novel thermophilic pectate lyase containing two catalytic modules of Clostridium stercorarium.
The Clostridium stercorarium F-9 pel9A gene encodes a pectate lyase Pel9A consisting of 1,240 amino acids with a molecular weight of 135,171. The mature form of Pel9A is a modular enzyme composed of two family-9 catalytic modules of polysaccharide lyases, CM9-1 and CM9-2, in order from the N terminus. Pel9A showed an overall sequence similarity to the hypothetical pectate lyase PelX of Bacillus...
متن کامل